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A transient three-dimensional shape identification problem (inverse geometry problem) to determine the
unknown irregular and moving boundary configurations by utilizing the steepest descend method (SDM)
and a general purpose commercial code CFD-RC is successfully developed and examined in this study
based on the simulated measured temperature distributions on the bottom surface by infrared thermog-
raphy. The advantage of calling CFD-RC as a subroutine in the present inverse calculation lies in that its
auto-mesh function enables the handling of this moving boundary problem. Results obtained by using
the technique of SDM to solve the inverse geometry problem are justified based on the numerical exper-
iments. Two test cases are performed to test the validity of the present algorithm by using different types
of boundary shapes, initial guesses and measurement errors. Results show that reliable estimations on
the unknown space and time-dependent boundary geometry can be obtained when the measurement
errors are considered.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The direct heat conduction problems are concerned with the
determination of temperature at interior points of a region when
the initial and boundary conditions, thermophysical properties
and heat generation are specified. In contrast, the inverse heat con-
duction problem involves the determination of the unknown phys-
ical conditions from the knowledge of temperature measurements
taken on or within the domain where the geometry of the physical
problem under consideration is known. For instance, Huang and
Chen [1] used the conjugate gradient method (CGM) in estimating
surface heat fluxes for a three-dimensional inverse heat convection
problem. Huang and Huang [2] used the CGM in an inverse bio-
technology problem to estimate the optical diffusion and absorp-
tion coefficients of tissue. Huang and Lo [3] applied the SDM in a
three-dimensional inverse problem in predicting the heat fluxes
distribution of the cutting tools. However, when the geometry of
the problems is subjected to change and unknown, i.e. the bound-
ary is moving, the technique of inverse geometry problem (IGP)
should be used to estimate the space and time-dependent bound-
ary configurations.

The application of inverse geometry problem, such as thermal
imaging, has become another area of active inverse problem re-
search recently and many researchers have devoted to infrared
ll rights reserved.
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scanner and their applications to nondestructive evaluation
(NDE) [4] and shape identifications [5] problems. Dems and Mroz
[6] investigated the sensitivity analysis for static and quasi-static
problems with respect to size and shape design variables. The ap-
proaches taken to solve these problems are based on either steady
or unsteady-state response of a body subjected to thermal sources.

For the transient inverse geometry problem, due to its inherent
nature of moving boundary, it requires a complete regeneration of
the mesh as the geometry evolves. Moreover, the continuous evo-
lution of the geometry itself poses certain difficulties in arriving at
analytical or numerical solutions. Therefore, an efficient technique
must be used to calculate the problems with irregular and moving
boundary geometry, especially in the 3D applications.

The inverse geometry problems, including the cavity or shape
estimation, have been solved by a variety of numerical methods
[7–9]. Huang and his co-workers have utilized the gradient-based
method (SDM and CGM) and boundary element technique to the
inverse geometry problems and have published a series of relevant
papers. Huang and Chao [10] were the first to derive the formula-
tions for determining the unknown irregular boundary configura-
tions for a 2D steady-state shape identification problem with the
CGM. Huang and Tsai [11] have extended the algorithm to a 2D
transient shape identification problem in finding the unknown
irregular boundary configurations from boundary measurements.
Huang et al. [12] have developed a modified model for two-dimen-
sional multiple cavities estimations where the search directions
are not confined. Huang and Chen [13] have extended the similar
algorithm to a multiple region domain in estimating the time
and space-dependent outer boundary configurations. Recently
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Nomenclature

Cp heat capacity per unit volume
f(x,y, t) unknown boundary configurations
J functional defined by Eq. (2)
J0 gradient of functional defined by Eq. (14)
k thermal conductivity
P direction of descent defined by Eq. (4)
q heat flux density
T(x,y,z, t) estimated temperature
T0 boundary temperature on Stop

DT(x,y,z, t) sensitivity function defined by Eq. (5)
Y(Sbottom, t) measured temperatures

Greek symbols
b search step size
q density

X computational domain
k(x,y,z, t) Lagrange multiplier defined by Eq. (11)
d(�) Dirac delta function
x random number
e convergence criterion
r standard deviation of the measurement errors

Superscript
n iteration index

S4

S1

Sbottom

S2

S3

Stop (x,y,z,t),  z=f(x,y,t)=unknown

Ω(x,y,z,t)

Fig. 1. Geometry and coordinates.
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Huang and Shih [14] applied the technique to a shape identifica-
tion problem in estimating simultaneously two interfacial configu-
rations in a multiple region domain.

It should be noted that the above references are all 2D inverse
geometry problems; the steady 3D inverse geometry problems
are still very limited in the literatures. Recently, Divo et al. [15]
used the genetic algorithm and a singular superposition technique
to detect the unknown sphere cavity in a 3D inverse geometry
problem. It should be noted that the transient 3D inverse geometry
problem with SDM has never been examined in the opening
literatures.

The commercial code CFD-RC [16] is available for solving fluid
dynamic and heat transfer problems with the feature of auto-
meshing. If one can link the CFD-RC with an inverse algorithm, a
generalized transient 3D inverse geometry problem can thus be
established. The objective of the present study is to extend the pre-
vious studies on the inverse geometry problems by the authors
[11–14] and to utilize the CFD-RC code as the subroutine to solve
the transient 3D inverse geometry problem by the SDM. The appli-
cation of this technique can be used in estimating the unknown
interface of the solid and liquid phases for the phase change
problems.

A sequence of forward transient heat conduction problems is
solved by CFD-RC in an effort to update the boundary shape by
minimizing a residual measuring the difference between estimated
and measured temperatures under the present algorithm.

The SDM derives from the perturbation principles [17] and
transforms the inverse geometry problem to the solution of three
problems, namely, the direct, sensitivity and the adjoint problem.
Those three problems can be solved by CFD-RC and the calculated
results are then utilized in the SDM for shape identifications.

2. The direct problem

To show the methodology for developing expressions for use in
determining unknown space and time-dependent boundary geom-
etry in a three-dimensional homogeneous medium, the following
three-dimensional unsteady-state inverse heat conduction prob-
lem is examined. Initially, the domain X has the uniform tempera-
ture Ti. When time t > 0, the boundary conditions on four side
surfaces S1, S2, S3 and S4 are all assumed insulated, on the bottom
surface Sbottom, a constant heat flux q is taken away from the
boundary by cooling while the boundary condition on the top sur-
face Stop, z = f(x,y, t), maintains at an uniform temperature T0. Fig. 1
shows the geometry and the coordinates for the transient three-
dimensional physical problem considered here. The mathematical
formulation of this unsteady-state heat conduction problem in
dimensional form is given by

k
o2T
ox2 þ

o2T
oy2 þ

o2T
oz2

" #
¼ qCp

oT
ot

in X; t > 0 ð1aÞ

oT
ox
¼ 0 on S1; t > 0 ð1bÞ

oT
ox
¼ 0 on S2; t > 0 ð1cÞ

oT
oy
¼ 0 on S3; t > 0 ð1dÞ

oT
oy
¼ 0 on S4; t > 0 ð1eÞ

k
oT
oz
¼ qðSbottom; tÞ on Sbottom; t > 0 ð1fÞ

T ¼ T0 on Stop; z ¼ f ðx; y; tÞ; t > 0 ð1gÞ
T ¼ T i at t ¼ 0 ð1hÞ

where k, Cp and q denote the thermal conductivity, heat capacity
and density, respectively, and q is the heat flux. The above problem
is solved by the commercial package CFD-RC [16] for it has the abil-
ity to perform the auto-mesh function and to solve the moving
boundary problems.

The direct problem considered here is concerned with the
determination of the body temperatures when the space and
time-dependent boundary geometry f(x,y, t), initial condition and
boundary conditions at all boundaries are known.
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3. The inverse geometry problem

For the transient three-dimensional inverse geometry problem
considered here, the boundary space and time-dependent geome-
try f(x,y, t) is regarded as being unknown, but everything else in
Eq. (1) is known. In addition, the simulated temperature readings
taken by infrared scanner on the bottom surface Sbottom with time
are considered available.

Referring to Fig. 1, let the temperature reading taken by the
simulated infrared scanner on the bottom surface Sbottom be de-
noted by Y(Sbottom, t) � Y(xm,ym, t) � Ym(Sbottom, t), m = 1 to M, where
M represents the number of measured temperature extracting
points and t denotes time. It is noted that the measured tempera-
ture Ym(Sbottom, t) should contain measurement errors. The present
shape identification problem can be stated as follows: by utilizing
the above mentioned measured temperature data Ym(S bottom, t),
estimate the unknown space and time-dependent geometry on
the top surface, z = f(x,y, t).

The solution of this inverse geometry problem is to be obtained
in such a way that the following functional is minimized:

J½f ðx; y; tÞ� ¼
Z tf

t¼0

XM

m¼1

½TmðSbottom; tÞ � YmðSbottom; tÞ�2dt

¼
Z tf

t¼0

Z
Sbottom

ðT � YÞ2dðx� xmÞdðy� ymÞdSbottom dt ð2Þ

where d(x � xm) and d(y � ym) are the Dirac delta functions and Tm

are the estimated or computed temperatures on the measured posi-
tions (xm,ym) on Sbottom with time t. These quantities are determined
from the solution of the direct problem given previously by using
estimated boundary geometry for the exact f(x,y, t).
4. Steepest descent method for minimization

The steepest descent method itself may not ensure the global
minimum; however, if the objective function is properly defined
and makes it in a quadratic form, like the definition in Eq. (2),
the global minimum for this objective function is guarantied.

The following iterative process based on the SDM [17] is now
used for the estimation of unknown space and time-dependent
boundary geometry f(x,y, t) by minimizing the functional J[f(x,y, t)]

f nþ1ðx; y; tÞ ¼ f nðx; y; tÞ � bnPnðx; y; tÞ for n ¼ 0;1;2; . . . ð3Þ

where bn is the search step size in going from iteration n to iteration
n + 1, and Pn(x,y, t) is the direction of descent (i.e. search direction)
given by

Pnðx; y; tÞ ¼ J0nðx; y; tÞ ð4Þ

which is equal to the gradient direction J0nðx; y; tÞ at iteration n.
To perform the iterations according to Eq. (3), a search step size

bn and the gradient of the functional J0nðx; y; tÞ need be computed.
In order to develop expressions for the determination of these
two quantities, a sensitivity problem and an adjoint problem are
constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem is obtained from the original direct
problem defined by Eq. (1) in the following manner: It is assumed
that when z = f(x,y, t) undergoes a variation Dz (or Df(x,y, t)) in z-
direction only with both x and y fixed, T(x,y,z, t) is perturbed by
DT(x,y,z, t). Replacing in the direct problem f by f + Df and T by
T + DT, subtracting the direct problem from the resulting expres-
sions and neglecting the second-order terms, the following sensi-
tivity problem for determining the sensitivity function DT is
obtained:

k
o2DT
ox2 þ

o2DT
oy2 þ

o2DT
oz2

" #
¼ qCp

oDT
ot

in X; t > 0 ð5aÞ

oDT
ox
¼ 0 on S1; t > 0 ð5bÞ

oDT
ox
¼ 0 on S2; t > 0 ð5cÞ

oDT
oy
¼ 0 on S3; t > 0 ð5dÞ

oDT
oy
¼ 0 on S4; t > 0 ð5eÞ

oDT
oz
¼ 0 on Sbottom; t > 0 ð5fÞ

DT ¼ Df
oT
oz

on Stop; z ¼ f ðx; y; tÞ; t > 0 ð5gÞ

DT ¼ 0 at t ¼ 0 ð5hÞ

The commercial package CFD-RC is utilized to solve the above sen-
sitivity problem. The functional J(fn+1) for iteration n + 1 is obtained
by rewriting Eq. (2) as

Jðf nþ1Þ ¼
Z tf

t¼0

Z
Sbottom

½TðSbottom; t; f n � bnPnÞ � Y�2

� dðx� xmÞdðy� ymÞdSbottom dt ð6Þ

where fn+1(x,y, t) has been replaced by the expression given by Eq.
(3). If temperature T(Sbottom, t; fn � bnPn) is linearized by a Taylor’s
expansion, Eq. (6) becomes

Jðf nþ1Þ ¼
Z tf

t¼0

Z
Sbottom

½TðSbottom; t; f nÞ � bnDTðSbottom; t; PnÞ � Y �2

� dðx� xmÞdðy� ymÞdSbottom dt ð7Þ

where T(Sbottom, t; fn) is the solution of the direct problem by using
the estimated fn(x,y, t) for exact f(x,y, t) on the top surface Stop. The
sensitivity functions DT(Sbottom, t;Pn) are taken as the solutions of
problem (5) on Sbottom with time t by letting Df = Pn.

The search step size bn can be determined by minimizing the
functional given by Eq. (7) with respect to bn. The following expres-
sion results:

bn ¼
R tf

t¼0

R
Sbottom

ðT � YÞDTdðx� xmÞdðy� ymÞdSbottom dtR tf
t¼0

R
Sbottom

ðDTÞ2dðx� xmÞdðy� ymÞdSbottom dt
ð8Þ
6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied by a La-
grange multiplier (or adjoint function) k(x,y,z, t) and the resulting
expression is integrated over the correspondent space and time
domains. The result is then added to the right hand side of Eq.
(2) to yield the following expression for the functional J[f(x,y, t)]:

J½f ðx; y; tÞ� ¼
Z tf

t¼0

Z
Sbottom

ðT � YÞ2dðx� xmÞdðy� ymÞdSbottom dt

þ
Z tf

t¼0

Z L

x¼0

Z L

y¼0

�
Z f ðx;y;tÞ

z¼0
kðx; y; z; tÞ o2T

ox2 þ
o2T
oy2 þ

o2T
oz2

( )
dzdydxdt ð9Þ

The variation DJ is obtained by perturbing f by Df and T by DT in Eq.
(9), subtracting the original Eq. (9) from the resulting expression
and neglecting the second-order terms. It thus finds
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DJ½f ðx; y; tÞ� ¼
Z tf

t¼0

Z
Sbottom

2½T � Y �DTdðx� xmÞdðy

� ymÞdSbottom dt þ
Z tf

t¼0

Z L

x¼0

Z L

y¼0

�
Z f ðx;y;tÞ

z¼0
kðx; y; z; tÞ o2DT

ox2 þ
o2DT
oy2 þ

o2DT
oz2

( )
dzdydxdt

ð10Þ

where d(x � xm) and d(y � ym) are the Dirac delta function and
(xm,ym), n = 1 to M, refer to the temperature extracting points at
time t. In Eq. (10), the integral term containing k(x,y,z, t) is inte-
grated by parts; the boundary conditions of the sensitivity problem
given by Eqs. (5b)–(5g) are utilized and then DJ is allowed to go to
zero. The vanishing of the integrands containing DT leads to the fol-
lowing adjoint problem for the determination of k(x,y,z, t):

k
o2k
ox2 þ

o2k
oy2 þ

o2k
oz2

" #
þ qCp

ok
ot
¼ 0 in X; t > 0 ð11aÞ

ok
ox
¼ 0 on S1; t > 0 ð11bÞ

ok
ox
¼ 0 on S2; t > 0 ð11cÞ

ok
oy
¼ 0 on S3; t > 0 ð11dÞ

ok
oy
¼ 0 on S4; t > 0 ð11eÞ

ok
oz
¼ �2ðT � YÞdðx� xmÞdðy� ymÞ on Sbottom; t > 0 ð11fÞ

k ¼ 0 on Stop ¼ f ðx; y; tÞ; t > 0 ð11gÞ
k ¼ 0 at t ¼ tf ð11hÞ

The adjoint problem differs from the standard initial value prob-
lems in that the final time conditions at time t = tf is specified in-
stead of the customary initial condition. However, this adjoint
problem can be transformed to an initial value problem by the
transformation of the time variables as s = tf � t. The CFD-RC can
then be used to solve the above adjoint problem.

Finally, the following integral term is left:

DJ ¼
Z tf

t¼0

Z
Stop

� ok
oz

oT
oz

� �
z¼f ðx;y;tÞ

Df ðx; y; tÞdStop dt ð12Þ

From definition [17], the functional increment can be presented as

DJ ¼
Z tf

t¼0

Z
Stop

J0ðx; y; tÞDf ðx; y; tÞdStop dt ð13Þ

A comparison of Eqs. (12) and (13) leads to the following expression
for the gradient of functional J0(x,y, t) of the functional J[f(x,y, t)]:

J0ðx; y; tÞ ¼ �ok
oz

oT
oz

����
z¼f ðx;y;tÞ

ð14aÞ

It is noted that J0(x,y,0) and J0(x,y, tf) are always equal to zero since
okðx;y;z;tf Þ

oz ¼ 0 and oTðx;y;z;0Þ
oz ¼ 0. If the initial values of f(x,y, 0) and final

time values of f(x,y, tf) cannot be obtained before the shape identify
calculations, the estimated values of f(x,y, t) will deviate from the
exact values near both initial and final time conditions. This is the
case in the present study. However, if we let

oTðx; y; z;0Þ
oz

¼ oTðx; y; z;DtÞ
oy

ð14bÞ

okðx; y; z; tf Þ
oz

¼ okðx; y; z; tf � DtÞ
oz

ð14cÞ

where Dt denotes the time increment used in the numerical calcu-
lation. By applying (14b) and (14c) to the gradient equation (14a),
the singularity at t = 0 and tf can be avoided in the present study
and the reliable inverse solutions can be obtained.
7. Stopping criterion

If the problem contains no measurement errors, the traditional
check condition is specified as

J½f nþ1ðx; y; tÞ� < e ð15Þ

where e is a specified number. However, the simulated temperature
readings taken by infrared scanner may contain measurement er-
rors. Therefore, it is not expected that the functional equation (2)
to be equal to zero at the final iteration step. Following the experi-
ence of the authors [11–14], the discrepancy principle is utilized as
the stopping criterion, i.e. the temperature residuals may be
approximated by

TðSbottom; tÞ � YðSbottom; tÞ � r ð16Þ

where r is the standard deviation of the temperature measure-
ments, which is assumed to be a constant. Substituting Eq. (16) into
Eq. (2), the following expression is obtained for e:

e ¼ r2Mtf ð17Þ

The stopping criterion is given by Eq. (15) with e determined from
Eq. (17).

8. Computational procedure

The computational procedure for the solution of this transient
three-dimensional inverse geometry problem using the SDM can
now be summarized as follows.

Suppose fn(x,y, t) is available at iteration n:

Step 1: Solve the direct problem given by Eq. (1) for T(x,y,z, t).
Step 2: Examine the stopping criterion e for convergence.Con-

tinue if not satisfied.
Step 3: Solve the adjoint problem given by Eq. (11) for k(x,y,z, t).
Step 4: Compute the gradient of the functional J0(x,y, t) from Eq.

(14a).
Step 5: Compute the direction of descent Pn from Eq. (4).
Step 6: Set Df(x,y, t) = Pn(x,y, t), and solve the sensitivity problem

given by Eq. (5) for DT(x,y,z, t).
Step 7: Compute the search step size bn from Eq. (8).
Step 8: Compute the new estimation for fn+1(x,y, t) from Eq. (3)

and return to step 1.
9. Results and discussion

To illustrate the validity of the SDM in identifying space and
time-dependent boundary configuration z = f(x,y, t) in a 3D bound-
ary shapes identification problem based on the knowledge of the
simulated temperature recordings taken by infrared scanner on
the bottom surface Sbottom with time t, two specific examples were
considered in this study where the surface geometry on Stop,
z = f(x,y, t), are assumed as two different functions, the first one is
a combination of sine and cosine functions and the second one is
a combination of triangular functions.

The goal of this work is to show the validity of the SDM in
estimating f(x,y, t) with no prior information on the functional
form of the unknown quantities, which is the so-called function
estimation.

In order to compare the results for situations involving random
measurement errors, the normally distributed uncorrelated errors
with zero mean and constant standard deviation were assumed.
The simulated inexact measurement data Y can be expressed as

Y ¼ Ydir þ xr ð18Þ

where Ydir is the solution of the direct problem with an exact
f(x,y, t); r is the standard deviation of the measurement error; and
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Fig. 2. The (a) exact and (b) estimated surface configurations f(x,y,50) at t = 50 s
with r = 0.0 and f(x,y, t)0 = 0.04 m in case 1.

Fig. 3. The (a) measured and (b) estimated surface temperatures on Sbottom at
t = 50 s with r = 0.0 and f(x,y, t)0 = 0.04 m in case 1.
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x is a random variable that generated by subroutine DRNNOR of the
IMSL [18] and will be within �2.576 to 2.576 for a 99% confidence
bounds.

One of the advantages of using the SDM is that it does not re-
quire a very accurate initial guess of the unknown quantities, this
can be verified in the following numerical test case 1.

In all the test cases considered here the following parameters
are chosen, k = 76.2 W/(m K), q = 7870 kg/m3, Cp = 440 J/(kg K), Lx

(length in x-direction) = Ly (length in y-direction) = 0.5 m, and the
spacing in numerical computations is taken as Dx = Dy = 0.05 m,
i.e. there are 11 grid points in both x- and y-direction. In z-direc-
tion, five grids are always chosen for computations. In time do-
main, total time is taken as 200 s and Dt = 20 s is used in
numerical calculations. Therefore, there is totally of 2420 discreted
boundary shapes need to be estimated in this study.

The initial temperature Ti = 23 �C and boundary condition
T0 = 127 �C is applied on Stop. The measurement surface is always
on Sbottom, i.e. on the bottom surface. Two numerical experiments
in estimating f(x,y, t) by the inverse analysis are now presented
below.

9.1. Numerical test case 1

The unknown boundary configuration on Stop, z = f(x,y, t), is as-
sumed in the following form:

f ðx; y; tÞ ¼ 0:05þ 0:015� sin
2px
0:1

� �
� cos

2py
0:1

� �

� sin
2pt
200

� �
ð19Þ

which represents a combination of sine and cosine functions.
The inverse analysis is first performed by using q = �50,000 W/

m2 and assuming exact measurements, i.e. r = 0.0, and using initial
guess f(x,y, t)0 = 0.04 m with convergent criterion e = 500.

After 21 iterations, the exact and estimated functions of f(x,y, t)
by using the SDM at t = 50 s is shown in Fig. 2a and b, respectively,
while the measured and estimated surface temperatures on Sbottom

are illustrated in Fig. 3a and b, respectively. Similarly, the esti-
mated results for boundary shapes and temperatures at t = 150 s
are shown in Figs. 4 and 5, respectively.

The average relative errors for the exact and estimated surface
configurations and for the measured and estimated temperatures
are calculated ERR1 = 1.56% and ERR2 = 0.066%, respectively,
where the average relative errors ERR1 and ERR2 are defined as

ERR1 ¼
XN

n¼1

XM

m¼1

XI

i¼1

f ðxn; ym; tiÞ � f̂ ðxn; ym; tiÞ
f ðxn; ym; tiÞ

�����
�����

� ðN �M � IÞ � 100% ð20aÞ

ERR2 ¼
XN

n¼1

XM

m¼1

XI

i¼1

Tðxn; ym;0; tiÞ � Yðxn; ym;0; tiÞ
Yðxn; ym;0; tiÞ

����
����

� ðN �M � IÞ � 100% ð20bÞ

here N = 11 and M = 11 represent the total discreted number of grid
in x- and y-directions, respectively and I = 20 indicates the number
of grid in t-direction, while f and f̂ denote the exact and estimated
values of surface configurations, respectively. It can be seen from
the above figures and relative average errors that the present shape
identification scheme obtained good estimation for f(x,y, t).

Next, it would be of interest to examine what will be happen
when different initial guess is considered. The computational con-
ditions are the same as the previous case except that the initial
guess is now chosen as f(x,y, t)0 = 0.06 m.

Using stopping criterion e = 500, after 22 iterations the inverse
solutions for the estimated surface shapes at t = 50 and 150 s are
shown in Fig. 6a and b, respectively. The relative average errors
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b

Fig. 4. The (a) exact and (b) estimated surface configurations f(x,y,150) at t = 150 s
with r = 0.0 and f(x,y, t)0 = 0.04 m in case 1.

Fig. 5. The (a) measured and (b) estimated surface temperatures on Sbottom at
t = 150 s with r = 0.0 and f(x,y, t)0 = 0.04 m in case 1.
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ERR1 and ERR2 are calculated as ERR1 = 1.51% and ERR2 = 0.083%,
respectively. The results are similar to those with f(x,y, t)0 = 0.04 m.
Therefore, it is clear from Fig. 6 and relative average errors that the
estimated f(x,y, t) is still very accurate when the initial guess for
surface shapes is varied.

Finally, the influence of the measurement errors on the inverse
solutions will be discussed. First, the measurement error for the
simulated temperatures measured by infrared scanner on bottom
surface Sbottom is taken as r = 0.62 (about 1% of the average temper-
ature measured on Sbottom). The estimations for f(x,y, t) can be ob-
tained after only 14 iterations and plotted in Fig. 7a and b for
t = 50 and 150 s, respectively. The relative average errors ERR1
and ERR2 are calculated as ERR1 = 2.19% and ERR2 = 0.12%, respec-
tively. The measurement error for the temperatures is then in-
creased to r = 1.24 (about 2% of the average temperature
measured on Sbottom). After only eight iterations the estimated
f(x,y, t) are obtained and illustrated in Fig. 8a and b for t = 50 and
150 s, respectively. ERR1 and ERR2 are calculated as 3.22% and
0.24%, respectively. From those results it is learned that the reliable
boundary configurations can still be obtained when large measure-
ment errors are added.

9.2. Numerical test case 2

In the second test case, f(x,y, t) is taken as

f ðx; y; tÞ ¼

0:05þ 0:001� yþ 0:01� sin 2pt
200

� �
� x;

0 6 x 6 0:15
0:05þ 0:001� yþ 0:01� sin 2pt

200

� �
� 3� 0:015

� sin 2pt
200

� �
� ðx� 3Þ; 0:15 < x 6 0:25

0:05þ 0:001� yþ 0:015� sin 2pt
200

� �
� ðx� 5Þ;

0:25 < x 6 0:4
0:05þ 0:001� yþ 0:015� sin 2pt

200

� �
� 3� 0:02

� sin 2pt
200

� �
� ðx� 8Þ; 0:4 < x 6 0:5

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð21Þ
The initial guess for this test case is chosen as f(x,y)0 = 0.04 m. The
inverse analysis is first performed by using q = �50,000 W/m2 and
assuming exact measurements, i.e. r = 0.0 and using initial guess
f(x,y, t)0 = 0.04 m with convergent criterion e = 500. The exact
f(x,y, t) in the above Eq. (21) at t = 50 s is shown in Fig. 9a. The esti-
mated f(x,y, t) can be obtained after 39 iterations and is plotted in
Fig. 9b at t = 50 s. The measured and estimated surface tempera-
tures on Sbottom are illustrated in Fig. 10a and b, respectively, at
t = 50 s.

Similarly, the estimated results for boundary shapes and tem-
peratures at t = 150 s are shown in Figs. 11 and 12, respectively.
The average relative errors for the exact and estimated surface con-
figurations and for the measured and estimated temperatures are
calculated ERR1 = 2.21% and ERR2 = 0.071%, respectively.

Next, let us consider the influence of the measurement errors on
the inverse solutions. First, the measurement error for the simu-
lated temperatures measured by infrared scanner on bottom sur-
face Sbottom is taken as r = 0.72 (about 1% of the average
temperature measured on Sbottom). After only 14 iterations, the
estimations for f(x,y, t) can be obtained and are plotted in
Fig. 13a and b for t = 50 and 150 s, respectively. The relative aver-
age errors ERR1 and ERR2 are calculated as ERR1 = 3.46% and
ERR2 = 0.14%, respectively.

The measurement error for the temperatures is then increased to
r = 1.44 (about 2% of the average temperature measured on
Sbottom). After only eight iterations the estimated f(x,y, t) are obtained
and illustrated in Fig. 14a and b for t = 50 and 150 s, respectively.
ERR1 and ERR2 are calculated as 5.15% and 0.29%, respectively.

From the above two numerical test cases, it is concluded that
the advantages of the SDM in estimating unknown surface config-



a

b

Fig. 8. The estimated surface configurations f(x,y, t) with r = 1.24 and f(x,y,
t)0 = 0.04 m in case 1 at (a) t = 50 s and (b) t = 150 s.

a

b

Fig. 7. The estimated surface configurations f(x,y, t) with r = 0.62 and f(x,y,
t)0 = 0.04 m in case 1 at (a) t = 50 s and (b) t = 150 s.

a

b

Fig. 6. The estimated surface configurations f(x,y, t) with r = 0.0 and f(x,y, t)0 = 0.06 m
in case 1 at (a) t = 50 s and (b) t = 150 s.

a

b

Fig. 9. The (a) exact and (b) estimated surface configurations f(x,y,50) at t = 50 s
with r = 0.0 and f(x,y, t)0 = 0.04 m in case 2.
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Fig. 10. The (a) measured and (b) estimated surface temperatures on Sbottom at
t = 50 s with r = 0.0 and f(x,y, t)0 = 0.04 m in case 2.

a

b

Fig. 11. The (a) exact and (b) estimated surface configurations f(x,y,150) at t = 150 s
with r = 0.0 and f(x,y, t)0 = 0.04 m in case 2.

Fig. 12. The (a) measured and (b) estimated surface temperatures on Sbottom at
t = 150 s with r = 0.0 and f(x,y, t)0 = 0.04 m in case 2.

a

b

Fig. 13. The estimated surface configurations f(x,y, t) with r = 0.72 and
f(x,y, t)0 = 0.04 m in case 2 at (a) t = 50 s and (b) t = 150 s.
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Fig. 14. The estimated surface configurations f(x,y, t) with r = 1.44 and
f(x,y, t)0 = 0.04 m in case 2 at (a) t = 50 s and (b) t = 150 s.
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urations lie in that (i) it does not require a very accurate initial
guess and (ii) the rate of convergence is fast.

10. Conclusions

The steepest descent method (SDM) and the commercial code
CFD-RC are successfully applied for the solution of the three-
dimensional transient inverse geometry problem in determining
the unknown time and space-dependent irregular boundary con-
figurations by utilizing simulated surface temperature measure-
ments. Several test cases involving different initial guess,
functional forms of f(x,y, t) and measurement errors were consid-
ered. The results show that the SDM does not require an accurate
initial guess of the unknown quantities and needs very few num-
bers of iterations in performing the inverse calculations on Pen-
tium IV-30 GHz PC.
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